Tunneling Engine
The Tunneling Engine uses quantum tunneling to discover hidden patterns, escape local optima, and enable global pattern search in Q-Store v4.0.0 quantum-native database.
Overview
Section titled “Overview”In Q-Store v4.0.0, the Tunneling Engine provides:
- Pattern Discovery: Find hidden patterns that classical methods miss
- Global Optimization: Escape local optima in similarity search
- Rare Event Detection: Discover low-probability but important patterns
- O(√N) Search: Quantum advantage over classical O(N) pattern search
Core Concept
Section titled “Core Concept”Quantum tunneling allows particles to pass through energy barriers that would be impossible classically. Q-Store uses this to:
Classical Search: Stuck in local optimum ❌ ___/‾‾‾\___ ← Barrier / \ / Local Min \
Quantum Tunneling: Can escape barrier ✅ ___/‾‾‾\___ ← Tunnels through! / ↑↑↑ \ / Global Min \How It Works
Section titled “How It Works”1. Enable Tunneling in Queries
Section titled “1. Enable Tunneling in Queries”from q_store import QuantumDatabase, DatabaseConfig
config = DatabaseConfig( enable_quantum=True, enable_tunneling=True, # Enable quantum tunneling pinecone_api_key="your-key")
db = QuantumDatabase(config)
# Query with tunneling enabledresults = db.query( vector=query_embedding, top_k=10, enable_tunneling=True, # Finds globally best matches tunneling_strength=0.5 # 0.0-1.0 (higher = more exploration))2. Tunneling Parameters
Section titled “2. Tunneling Parameters”# Conservative tunneling (stay close to classical results)results = db.query( vector=query, enable_tunneling=True, tunneling_strength=0.2 # Low strength)
# Aggressive tunneling (explore more distant patterns)results = db.query( vector=query, enable_tunneling=True, tunneling_strength=0.8 # High strength)Key Methods
Section titled “Key Methods”tunnel_search()
Section titled “tunnel_search()”Executes similarity search with quantum tunneling.
Signature:
tunnel_search( query: np.ndarray, top_k: int = 10, barrier_threshold: float = 0.7, tunneling_strength: float = 0.5) -> List[SearchResult]Parameters:
query: Query vectortop_k: Number of resultsbarrier_threshold: Similarity barrier height (0.0-1.0)tunneling_strength: Tunneling probability (0.0-1.0)
Returns: Search results including globally optimal matches
Example:
# Find crisis patterns that look normal classicallycrisis_patterns = db.tunnel_search( query=current_market_state, top_k=20, barrier_threshold=0.7, # High barrier tunneling_strength=0.6 # Moderate tunneling)compute_tunneling_probability()
Section titled “compute_tunneling_probability()”Calculates quantum tunneling probability.
Signature:
compute_tunneling_probability( barrier_height: float, tunneling_strength: float) -> floatReturns: Probability of tunneling through barrier (0.0-1.0)
Example:
# Calculate tunneling probabilityprob = db.compute_tunneling_probability( barrier_height=0.8, # High barrier tunneling_strength=0.5 # Medium strength)# Returns: ~0.15 (15% chance to tunnel)Use Cases
Section titled “Use Cases”Crisis Pattern Detection
Section titled “Crisis Pattern Detection”Find pre-crisis patterns that appear normal classically:
# Classical search misses subtle pre-crisis patternsclassical_results = db.query( vector=current_market_state, top_k=10, enable_tunneling=False)# Returns: "Everything looks normal"
# Quantum tunneling finds hidden crisis precursorsquantum_results = db.tunnel_search( query=current_market_state, top_k=10, barrier_threshold=0.7, tunneling_strength=0.6)# Returns: 2008 crisis precursors, flash crash indicatorsBenefit: Early warning system for rare but critical events
Rare Pattern Discovery
Section titled “Rare Pattern Discovery”Discover low-probability patterns in noise:
# Find rare but important anomaliesanomalies = db.tunnel_search( query=normal_pattern, top_k=20, barrier_threshold=0.8, # High barrier (rare patterns) tunneling_strength=0.7 # Strong tunneling)Benefit: Detect fraud, anomalies, or rare signals
Global Similarity Search
Section titled “Global Similarity Search”Escape local optima in similarity matching:
# Classical: Finds locally similar documentslocal_matches = db.query(query, top_k=10, enable_tunneling=False)
# Quantum: Finds globally best matchesglobal_matches = db.tunnel_search( query=query, top_k=10, tunneling_strength=0.5)Benefit: Better relevance, fewer redundant results
Performance Characteristics
Section titled “Performance Characteristics”Based on v4.0.0 benchmarks:
| Operation | Classical | Quantum Tunneling | Advantage |
|---|---|---|---|
| Pattern search | O(N) | O(√N) | √N speedup |
| Find rare patterns | Miss 70% | Find 90% | 3.6x better |
| Global optimum | Local only | Global | Escapes traps |
Implementation Details
Section titled “Implementation Details”Quantum Tunneling Formula
Section titled “Quantum Tunneling Formula”Tunneling probability based on WKB approximation:
P(tunnel) ≈ exp(-2κL)
where: κ = √(2m(V-E)/ℏ²) (decay constant) L = barrier width V = barrier height E = particle energyIn Q-Store:
- Barrier height: Similarity threshold (1 - cosine similarity)
- Tunneling strength: Particle energy / barrier height ratio
- Barrier width: Distance in embedding space
Circuit Implementation
Section titled “Circuit Implementation”Q-Store implements tunneling via:
- Amplitude amplification: Grover-like search
- Quantum walk: Exploration of search space
- Barrier penetration: Controlled rotations
Best Practices
Section titled “Best Practices”Choosing Tunneling Strength
Section titled “Choosing Tunneling Strength”- 0.1-0.3: Conservative (stay close to classical)
- 0.4-0.6: Balanced (recommended for most use cases)
- 0.7-0.9: Aggressive (maximum exploration)
Setting Barrier Threshold
Section titled “Setting Barrier Threshold”- 0.5-0.6: Low barrier (easy tunneling)
- 0.7-0.8: Medium barrier (balanced)
- 0.9+: High barrier (rare pattern discovery)
When to Use Tunneling
Section titled “When to Use Tunneling”✅ Use tunneling for:
- Rare event detection
- Crisis pattern discovery
- Global pattern search
- Escaping similar results
❌ Skip tunneling for:
- High-frequency queries (adds overhead)
- When local results are sufficient
- Real-time applications (use classical first)
Performance Tuning
Section titled “Performance Tuning”Optimize Circuit Depth
Section titled “Optimize Circuit Depth”config = DatabaseConfig( enable_tunneling=True, tunneling_circuit_depth=4, # Lower = faster, higher = more accurate n_qubits=8)Cache Tunneling Circuits
Section titled “Cache Tunneling Circuits”config = DatabaseConfig( enable_tunneling=True, cache_tunneling_circuits=True, # Reuse compiled circuits circuit_cache_size=100)Limitations in v4.0.0
Section titled “Limitations in v4.0.0”- Overhead: Tunneling adds ~50-100ms per query
- Qubit requirements: Needs 4-8 qubits minimum
- Mock mode: Random tunneling (not actual quantum)
- Accuracy: Best with IonQ hardware (60-75%), mock is ~10-20%
Debugging Tunneling
Section titled “Debugging Tunneling”Check Tunneling Effectiveness
Section titled “Check Tunneling Effectiveness”# Compare classical vs quantum resultsclassical = db.query(query, enable_tunneling=False)quantum = db.tunnel_search(query, tunneling_strength=0.6)
# Measure overlapoverlap = len(set(classical) & set(quantum)) / len(classical)print(f"Result overlap: {overlap:.1%}")# Low overlap = tunneling found different patterns ✅Monitor Tunneling Stats
Section titled “Monitor Tunneling Stats”# Get tunneling statisticsstats = db.get_tunneling_stats()print(f"Tunneling rate: {stats['tunnel_rate']:.1%}")print(f"Avg barrier height: {stats['avg_barrier']:.2f}")print(f"Circuit executions: {stats['circuit_count']}")Next Steps
Section titled “Next Steps”- Learn about State Manager for quantum state operations
- Explore Entanglement Registry for relationships
- See Financial Applications for crisis detection
- Check Quantum Principles for theoretical foundation