Skip to content

Tunneling Engine

The Tunneling Engine uses quantum tunneling to discover hidden patterns, escape local optima, and enable global pattern search in Q-Store v4.0.0 quantum-native database.

In Q-Store v4.0.0, the Tunneling Engine provides:

  • Pattern Discovery: Find hidden patterns that classical methods miss
  • Global Optimization: Escape local optima in similarity search
  • Rare Event Detection: Discover low-probability but important patterns
  • O(√N) Search: Quantum advantage over classical O(N) pattern search

Quantum tunneling allows particles to pass through energy barriers that would be impossible classically. Q-Store uses this to:

Classical Search: Stuck in local optimum ❌
___/‾‾‾\___ ← Barrier
/ \
/ Local Min \
Quantum Tunneling: Can escape barrier ✅
___/‾‾‾\___ ← Tunnels through!
/ ↑↑↑ \
/ Global Min \
from q_store import QuantumDatabase, DatabaseConfig
config = DatabaseConfig(
enable_quantum=True,
enable_tunneling=True, # Enable quantum tunneling
pinecone_api_key="your-key"
)
db = QuantumDatabase(config)
# Query with tunneling enabled
results = db.query(
vector=query_embedding,
top_k=10,
enable_tunneling=True, # Finds globally best matches
tunneling_strength=0.5 # 0.0-1.0 (higher = more exploration)
)
# Conservative tunneling (stay close to classical results)
results = db.query(
vector=query,
enable_tunneling=True,
tunneling_strength=0.2 # Low strength
)
# Aggressive tunneling (explore more distant patterns)
results = db.query(
vector=query,
enable_tunneling=True,
tunneling_strength=0.8 # High strength
)

Executes similarity search with quantum tunneling.

Signature:

tunnel_search(
query: np.ndarray,
top_k: int = 10,
barrier_threshold: float = 0.7,
tunneling_strength: float = 0.5
) -> List[SearchResult]

Parameters:

  • query: Query vector
  • top_k: Number of results
  • barrier_threshold: Similarity barrier height (0.0-1.0)
  • tunneling_strength: Tunneling probability (0.0-1.0)

Returns: Search results including globally optimal matches

Example:

# Find crisis patterns that look normal classically
crisis_patterns = db.tunnel_search(
query=current_market_state,
top_k=20,
barrier_threshold=0.7, # High barrier
tunneling_strength=0.6 # Moderate tunneling
)

Calculates quantum tunneling probability.

Signature:

compute_tunneling_probability(
barrier_height: float,
tunneling_strength: float
) -> float

Returns: Probability of tunneling through barrier (0.0-1.0)

Example:

# Calculate tunneling probability
prob = db.compute_tunneling_probability(
barrier_height=0.8, # High barrier
tunneling_strength=0.5 # Medium strength
)
# Returns: ~0.15 (15% chance to tunnel)

Find pre-crisis patterns that appear normal classically:

# Classical search misses subtle pre-crisis patterns
classical_results = db.query(
vector=current_market_state,
top_k=10,
enable_tunneling=False
)
# Returns: "Everything looks normal"
# Quantum tunneling finds hidden crisis precursors
quantum_results = db.tunnel_search(
query=current_market_state,
top_k=10,
barrier_threshold=0.7,
tunneling_strength=0.6
)
# Returns: 2008 crisis precursors, flash crash indicators

Benefit: Early warning system for rare but critical events

Discover low-probability patterns in noise:

# Find rare but important anomalies
anomalies = db.tunnel_search(
query=normal_pattern,
top_k=20,
barrier_threshold=0.8, # High barrier (rare patterns)
tunneling_strength=0.7 # Strong tunneling
)

Benefit: Detect fraud, anomalies, or rare signals

Escape local optima in similarity matching:

# Classical: Finds locally similar documents
local_matches = db.query(query, top_k=10, enable_tunneling=False)
# Quantum: Finds globally best matches
global_matches = db.tunnel_search(
query=query,
top_k=10,
tunneling_strength=0.5
)

Benefit: Better relevance, fewer redundant results

Based on v4.0.0 benchmarks:

OperationClassicalQuantum TunnelingAdvantage
Pattern searchO(N)O(√N)√N speedup
Find rare patternsMiss 70%Find 90%3.6x better
Global optimumLocal onlyGlobalEscapes traps

Tunneling probability based on WKB approximation:

P(tunnel) ≈ exp(-2κL)
where:
κ = √(2m(V-E)/ℏ²) (decay constant)
L = barrier width
V = barrier height
E = particle energy

In Q-Store:

  • Barrier height: Similarity threshold (1 - cosine similarity)
  • Tunneling strength: Particle energy / barrier height ratio
  • Barrier width: Distance in embedding space

Q-Store implements tunneling via:

  1. Amplitude amplification: Grover-like search
  2. Quantum walk: Exploration of search space
  3. Barrier penetration: Controlled rotations
  • 0.1-0.3: Conservative (stay close to classical)
  • 0.4-0.6: Balanced (recommended for most use cases)
  • 0.7-0.9: Aggressive (maximum exploration)
  • 0.5-0.6: Low barrier (easy tunneling)
  • 0.7-0.8: Medium barrier (balanced)
  • 0.9+: High barrier (rare pattern discovery)

Use tunneling for:

  • Rare event detection
  • Crisis pattern discovery
  • Global pattern search
  • Escaping similar results

Skip tunneling for:

  • High-frequency queries (adds overhead)
  • When local results are sufficient
  • Real-time applications (use classical first)
config = DatabaseConfig(
enable_tunneling=True,
tunneling_circuit_depth=4, # Lower = faster, higher = more accurate
n_qubits=8
)
config = DatabaseConfig(
enable_tunneling=True,
cache_tunneling_circuits=True, # Reuse compiled circuits
circuit_cache_size=100
)
  • Overhead: Tunneling adds ~50-100ms per query
  • Qubit requirements: Needs 4-8 qubits minimum
  • Mock mode: Random tunneling (not actual quantum)
  • Accuracy: Best with IonQ hardware (60-75%), mock is ~10-20%
# Compare classical vs quantum results
classical = db.query(query, enable_tunneling=False)
quantum = db.tunnel_search(query, tunneling_strength=0.6)
# Measure overlap
overlap = len(set(classical) & set(quantum)) / len(classical)
print(f"Result overlap: {overlap:.1%}")
# Low overlap = tunneling found different patterns ✅
# Get tunneling statistics
stats = db.get_tunneling_stats()
print(f"Tunneling rate: {stats['tunnel_rate']:.1%}")
print(f"Avg barrier height: {stats['avg_barrier']:.2f}")
print(f"Circuit executions: {stats['circuit_count']}")