Skip to content

Quantum Principles

Q-Store leverages four fundamental quantum properties as features rather than obstacles:

A vector has one fixed value at a time. Supporting multiple contexts requires:

  • Storing duplicate copies
  • Complex branching logic
  • Manual context management

Store vectors in superposition of multiple states simultaneously.

# Classical: One definite vector
vector = [0.5, 0.3, 0.8]
# Quantum: Superposition of multiple interpretations
|ψ⟩ = α|context_A⟩ + β|context_B⟩ + γ|context_C⟩
= 0.7|"normal_usage"+ 0.2|"edge_case"+ 0.1|"legacy"

Measurement collapses to the version most relevant to query context.

  • One quantum state = multiple classical versions
  • Context-aware without explicit branching logic
  • Exponential compression: n qubits = 2^n states
# Insert with multiple contexts
db.insert(
id='doc_123',
vector=embedding,
contexts=[
('technical', 0.6), # 60% probability
('general', 0.3), # 30% probability
('historical', 0.1) # 10% probability
]
)
# Query collapses to relevant context
results = db.query(
vector=query_embedding,
context='technical' # Superposition collapses here
)
  • Related entities stored separately
  • Consistency requires explicit synchronization
  • Cache invalidation complexity
  • Race conditions possible

Entangle related entities; updates propagate automatically via quantum correlation.

# Entangled state for correlated data
|Ψ⟩ = 1/2(|A₁⟩|B₁⟩ + |A₂⟩|B₂⟩)
# Update A → B automatically updates (quantum non-locality)
# Physically impossible for A and B to desync
  • Zero-latency relationship updates
  • Impossible to have stale references
  • No cache invalidation logic needed
  • Correlation strength = entanglement entropy
# Create entangled group
db.create_entangled_group(
group_id='related_stocks',
entity_ids=['AAPL', 'MSFT', 'GOOGL'],
correlation_strength=0.85
)
# Update one entity
db.update('AAPL', new_embedding)
# MSFT and GOOGL automatically reflect correlation
# No manual sync required!
  • Manual cache expiry policies
  • Complex TTL management
  • No natural relevance decay
  • Over-retention or premature deletion

Coherence time = relevance; physics handles expiry automatically.

# Different data types get different coherence times
hot_data: coherence_time = 1000ms # Stays relevant
normal_data: coherence_time = 100ms # Fades naturally
critical: coherence_time = 10000ms # Always remembered
  • No explicit TTL management
  • Physics-based relevance decay
  • Adaptive memory without code
  • Reduces storage costs automatically
# Hot data - long coherence
db.insert(
id='trending_topic',
vector=embedding,
coherence_time=5000 # 5 seconds
)
# Normal data - medium coherence
db.insert(
id='regular_doc',
vector=embedding,
coherence_time=1000 # 1 second
)
# Cleanup happens naturally
db.apply_decoherence() # Old data fades away

4. Quantum Tunneling for Pattern Discovery

Section titled “4. Quantum Tunneling for Pattern Discovery”
  • Local optima traps in search
  • Can’t find globally optimal patterns
  • Misses rare but important signals
  • Stuck in nearest-neighbor regions

Quantum tunneling passes through barriers to reach distant patterns.

# Classical: A → nearby B (local optimum)
# Quantum: A → tunnel through barrier → distant C (global optimum)
  • Pre-crisis patterns that look “normal” classically
  • Semantic matches with different syntax
  • Hidden correlations in high-dimensional space
  • Unexpected but valuable connections
  • Finds patterns classical ML misses
  • Escapes local optima in training
  • O(√N) vs O(N) search complexity
# Enable tunneling for pattern discovery
results = db.query(
vector=query_embedding,
enable_tunneling=True,
barrier_threshold=0.8, # How far to tunnel
top_k=10
)
# Returns distant but relevant matches
# Classical search would miss these

5. Uncertainty Principle for Explicit Tradeoffs

Section titled “5. Uncertainty Principle for Explicit Tradeoffs”
  • Hidden tradeoffs between precision and coverage
  • No way to control explicitly
  • Opaque search behavior

Heisenberg uncertainty makes tradeoff explicit and optimal.

ΔPrecision · ΔCoverage ≥ ℏ/2
# Precise mode: High precision, lower coverage
results = db.query(mode='precise')
# Exploratory mode: Lower precision, high coverage
results = db.query(mode='exploratory')
# Balanced: Quantum-optimal tradeoff
results = db.query(mode='balanced')
  • Explicit control over tradeoffs
  • Quantum-optimal balance
  • No hidden compromises
  • Transparent behavior
|ψ⟩ = Σᵢ αᵢ|i⟩
where:
- αᵢ = normalized vector components
- |αᵢ|² = probability of measuring state |i⟩
- Σᵢ |αᵢ|² = 1 (normalization)
S(ρ) = -Tr(ρ log ρ)
where:
- S(ρ) = von Neumann entropy
- ρ = reduced density matrix
- Higher S = stronger entanglement
T ≈ exp(-2κL)
where:
- T = transmission coefficient
- κ = barrier strength
- L = barrier width