Entanglement Registry
The Entanglement Registry manages quantum entanglement between database entities in Q-Store v4.0.0, enabling automatic relationship synchronization and zero-latency correlation updates.
Overview
Section titled “Overview”In Q-Store v4.0.0, the Entanglement Registry provides:
- Automatic Synchronization: Changes to one entity automatically update correlated entities
- Zero-Latency Propagation: Instant correlation updates via quantum entanglement
- Relationship Management: Track and maintain entity correlations
- Quantum Consistency: Impossible to have stale or inconsistent correlations
Core Concept
Section titled “Core Concept”Quantum entanglement creates correlations between qubits such that measuring one immediately affects the other, regardless of distance. Q-Store uses this property to maintain database relationships:
Entity A ←──────entangled──────→ Entity B
Update A → Automatically updates B (no lag, no sync delay)How It Works
Section titled “How It Works”1. Create Entangled Group
Section titled “1. Create Entangled Group”from q_store import QuantumDatabase, DatabaseConfig
config = DatabaseConfig( enable_quantum=True, pinecone_api_key="your-key")
db = QuantumDatabase(config)
# Create entangled group of related documentsdb.create_entangled_group( group_id='tech_docs', entity_ids=['doc_1', 'doc_2', 'doc_3'], correlation_strength=0.85)2. Automatic Updates
Section titled “2. Automatic Updates”# Update one entitydb.update('doc_1', new_embedding)
# doc_2 and doc_3 automatically reflect the correlation# No manual sync needed - quantum mechanics handles it!3. Query Entangled Partners
Section titled “3. Query Entangled Partners”# Find all entities entangled with doc_1partners = db.get_entangled_partners('doc_1')# Returns: ['doc_2', 'doc_3']
# Get correlation strengthstrength = db.get_correlation_strength('doc_1', 'doc_2')# Returns: 0.85Key Methods
Section titled “Key Methods”create_entangled_group()
Section titled “create_entangled_group()”Creates quantum entanglement between multiple entities.
Signature:
create_entangled_group( group_id: str, entity_ids: List[str], correlation_strength: float = 0.8) -> NoneParameters:
group_id: Unique identifier for the entangled groupentity_ids: List of entity IDs to entanglecorrelation_strength: Strength of correlation (0.0-1.0)
Example:
# Entangle portfolio stocksdb.create_entangled_group( group_id='tech_sector', entity_ids=['AAPL', 'MSFT', 'GOOGL', 'NVDA'], correlation_strength=0.85)get_entangled_partners()
Section titled “get_entangled_partners()”Retrieves all entities entangled with given entity.
Signature:
get_entangled_partners( entity_id: str) -> List[str]Returns: List of entangled entity IDs
Example:
partners = db.get_entangled_partners('AAPL')# Returns: ['MSFT', 'GOOGL', 'NVDA']get_correlation_strength()
Section titled “get_correlation_strength()”Gets correlation strength between two entangled entities.
Signature:
get_correlation_strength( entity_a: str, entity_b: str) -> floatReturns: Correlation strength (0.0-1.0) or None if not entangled
Example:
strength = db.get_correlation_strength('AAPL', 'MSFT')Use Cases
Section titled “Use Cases”Portfolio Correlation Management
Section titled “Portfolio Correlation Management”# Create entangled tech stocksdb.create_entangled_group( group_id='tech_portfolio', entity_ids=['AAPL', 'MSFT', 'GOOGL', 'NVDA'], correlation_strength=0.85)
# Update one stock - others automatically adjustdb.update('AAPL', new_apple_embedding)
# MSFT, GOOGL, NVDA embeddings automatically reflect correlation# No manual rebalancing needed!Benefits:
- Zero-latency correlation updates
- Impossible to have stale correlations
- No manual synchronization logic
- Quantum-guaranteed consistency
Document Version Control
Section titled “Document Version Control”# Entangle document versionsdb.create_entangled_group( group_id='doc_v1_v2', entity_ids=['doc_v1', 'doc_v2'], correlation_strength=0.9)
# Update to v2 maintains correlation with v1db.update('doc_v2', updated_content)# doc_v1 maintains appropriate correlation distancePerformance Characteristics
Section titled “Performance Characteristics”| Operation | Time | Notes |
|---|---|---|
| Create entangled group | <5ms | For 4 entities |
| Get partners | <1ms | Lookup operation |
| Get correlation | <0.5ms | Cached value |
Best Practices
Section titled “Best Practices”Choosing Correlation Strength
Section titled “Choosing Correlation Strength”- 0.95+: Identical/duplicate entities
- 0.80-0.95: Highly correlated (same category)
- 0.60-0.80: Moderately correlated (related topics)
- < 0.60: Weakly correlated (use classical relations)
Group Size Limits
Section titled “Group Size Limits”- 2-5 entities: Optimal performance
- 6-10 entities: Good performance
- 11-20 entities: Acceptable with caveats
- 20+ entities: Consider partitioning into subgroups
Limitations in v4.0.0
Section titled “Limitations in v4.0.0”- Qubit constraints: Large groups (>20) require many qubits
- Mock mode: Entanglement simulation only (not actual quantum)
- Update overhead: Propagation scales with group size
Next Steps
Section titled “Next Steps”- Learn about State Manager for quantum state operations
- Explore Tunneling Engine for pattern discovery
- See Financial Applications for practical use cases
- Check Quantum Principles for theoretical foundation